Sparse Estimation of Large Covariance Matrices via a Nested Lasso Penalty
نویسندگان
چکیده
The paper proposes a new covariance estimator for large covariance matrices when the variables have a natural ordering. Using the Cholesky decomposition of the inverse, we impose a banded structure on the Cholesky factor, and select the bandwidth adaptively for each row of the Cholesky factor, using a novel penalty we call nested Lasso. This structure has more flexibility than regular banding, but, unlike regular Lasso applied to the entries of the Cholesky factor, results in a sparse estimator for the inverse of the covariance matrix. An iterative algorithm for solving the optimization problem is developed. The estimator is compared to a number of other covariance estimators and is shown to do best, both in simulations and on a real data example. Simulations show that the margin by which the estimator outperforms its competitors tends to increase with dimension.
منابع مشابه
Sparse Estimation of Large Covariance Matrices via a Nested Lasso Penalty by Elizaveta Levina,1 Adam Rothman
The paper proposes a new covariance estimator for large covariance matrices when the variables have a natural ordering. Using the Cholesky decomposition of the inverse, we impose a banded structure on the Cholesky factor, and select the bandwidth adaptively for each row of the Cholesky factor, using a novel penalty we call nested Lasso. This structure has more flexibility than regular banding, ...
متن کاملGroup Lasso Estimation of High-dimensional Covariance Matrices
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic process corrupted by an additive noise. We propose to estimate the covariance matrix in a highdimensional setting under the assumption that the process has a sparse representation in a large dictionary of basis functions. Using a matrix regression model, we propose a new methodology for high-dimensiona...
متن کامل0 Sparse Inverse Covariance Estimation
Recently, there has been focus on penalized loglikelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting “norm” is the non-convex l0 penalty but its lack ...
متن کاملEstimating Spatial Covariance using Penalized Likelihood with Weighted L1 Penalty
In spatial statistics, estimation of large covariance matrices are of great importance because of their role in spatial prediction and design. The traditional approaches typically assume that the spatial process is stationary, the covariance function takes some well known parametric form, and estimates the parameters of the covariance functions using likelihood based methods. In this paper we p...
متن کاملA Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007